
ICT365

Software Development Frameworks

Dr Afaq Shah



Introduction to Design Patterns



In this Topic

UML class diagrams

Introduction to Design patterns

Façade

Adapter

3



UML Diagram - Class Relationships

• Dependency

• Association

• Aggregation

• Composition

• Generalization/Inheritance

Acknowledgements: Slides taken from - “Design Patterns (GoF) in .NET” by 
Aniruddha Chakrabarti



Dependency

Dependency - Weaker form of relationship which indicates that one class depends on another 
because it uses it at some point of time. 

Dependency exists if a class is a parameter variable or local variable of a method of another 
class.



Association, Aggregation and Composition

Aggregation - Whole part relationship. Part 
can exist without Whole.

(Engine can exist even if Car is destroyed, the 
same Engine could be used in a different 

Car)

Composition – Stronger form of whole part 
relationship. Part can not exist without 

Whole.
(OrderDetail can not exist if Order is deleted. 

If Order is deleted, OrderDetail also gets 
deleted)

Association – Loose form of relationship
(Student can enroll in multiple Course, and A 

Course can have multiple Student)



Generalization / Inheritance



UML Class Diagrams: Reference

• https://msdn.microsoft.com/en-
us/library/dd409437.aspx



What are Design Patterns

• A pattern is a solution to a standard problem

• General reusable solution to a commonly occurring 
problem in software design.

• Extension of OOP and OOAD.

• Description or template for how to solve a problem 
that can be used in many different situations. 

• Mostly documented with the following sections
Intent

Motivation (Forces)

Structure

Participants

Implementation

Known Uses

Related Patterns



History of Design Patterns

• Patterns originated as an architectural 
concept by Christopher Alexander - 1977

• Kent Beck and Ward Cunningham applied 
patterns to programming and presented 
their results at OOPSLA conference - 1987

• Gained popularity after the book Design 
Patterns: Elements of Reusable Object-
Oriented Software was published by 
"Gang of Four" (Erich Gamma, Richard 
Helm, Ralph Johnson & John Vlissides) –
1994

• First Pattern Languages of Programming
Conference was held – 1994

• Following year, the Portland Pattern 
Repository was set up for documentation 

of design patterns.



Design Patterns

• Design Patterns provide standardized and efficient solutions to 
software design and programming problems.

• However, you have to take care to select the right pattern for the 
right problem. 

• You may also create your own custom Design Patterns. 

- Whenever you come up with a certain solution that is reusable in a 
vast majority of your projects.

• Design Patterns are divided into 3 categories : 

- Creational Patterns, 

- Structural Patterns and 

- Behavioral Patterns. 

This and following slides come from:
https://csharpdesignpatterns.codeplex.com/wikipage?title=Adapter%20Pattern&referringTitle=Home



List of Design Patterns

• Creational Patterns
Singleton 
Abstract Factory
Builder
Factory Method
Prototype

• Structural Patterns
Adapter
Bridge
Composite
Decorator
Façade
Flyweight
Proxy

• Behavioral Patterns
– Chain of 

Responsibility
– Command
– Interpreter
– Iterator
– Mediator
– Memento
– Observer
– State
– Strategy
– Template Method
– Visitor



Adapter Design Pattern

• Adapter pattern (also called wrapper pattern or wrapper) 
translates one interface for a class into a compatible interface. 

• Allows classes (with incompatible interfaces) to work together

• The adapter translates calls to its interface into calls to original 
interface. 

• Responsible for transforming data. 

• Often used while working with existing API/code base



Adapter Class Diagram



Adapter Pattern



Pattern Name:
Adapter

Short Description:

• Match interfaces 
of classes with 
different interfaces

Usage:

• Often used and 
easy to 
implement, useful 
if classes need to 
work together that 
have incompatible 
existing 
interfaces.



Explanation

• The TradingDataImporter class acts as a client using classes 
with an existing Connector interface.

public class TradingDataImporter
{

public void ImportData(Connector connector)
{

connector.GetData();
}

}

• The abstract Adapter class defines the interface that the client 
class knows and that it can work with.

• The concrete Adapter classes convert the interface of the 
incompatible classes into an interface the client expects. They 
make different existing interfaces work together.



public abstract class Connector
{

public abstract void GetData();
}

public class DatabaseConnector : Connector
{

public override void GetData()
{

var databaseHelper = new DatabaseHelper();
databaseHelper.QueryForChanges();

}
}

public class XmlFileConnector : Connector
{

public override void GetData()
{

var xmlfileLoader = new XmlFileLoader();
xmlfileLoader.LoadXML();

}
}

public class HttpStreamConnector : Connector
{

public override void GetData()
{

var websiteScanner = new WebSiteScanner();
websiteScanner.Scan();

}
}



public class DatabaseHelper
{

public void QueryForChanges()
{

Console.WriteLine("Database queried.");
}

}

public class WebSiteScanner
{

public void Scan()
{

Console.WriteLine("Web sites scanned.");
}

}

public class XmlFileLoader
{

public void LoadXML()
{

Console.WriteLine("Xml files loaded.");
}

}

• Here are some examples of different adaptee classes that 
implement different interfaces. However, the client expects a 
generic interface that they currently don’t provide. That is why 
they get wrapped by the concrete adapter classes to make 
them compatible with the client.



public static void Adapter()
{

var tradingdataImporter = new TradingDataImporter();

Connector databaseConnector = 
new DatabaseConnector();

tradingdataImporter.ImportData(databaseConnector);

Connector xmlfileConnector = new XmlFileConnector();
tradingdataImporter.ImportData(xmlfileConnector);

Connector httpstreamConnector = 
new HttpStreamConnector();

tradingdataImporter.ImportData(httpstreamConnector);

Console.ReadKey();
}

• Correct classes are instantiated during runtime:



Adapter Pattern in ADO.NET

Data Adapters adapt data from different source (SQL Server, Oracle, 
ODBC, OLE DB) to dataset which is data-source unaware

Different Data Adapter classes are used
SqlDataAdapter

OdbcDataAdapter

OleDbDataAdapter



Adapter Pattern in ADO.NET – Cont’d



Singleton Pattern

• Used to implement the mathematical concept of a singleton, by 
restricting the instantiation of a class to one object. 

• Useful when exactly one object is needed to coordinate actions 
across the system. 

• Common Uses:

Abstract Factory, Builder and Prototype patterns can use Singletons in 
their implementation. 

Facade objects are often Singletons because only one Facade object is 
required. 

Singletons are often preferred to global variables because: 
They don't pollute the global name space (or, in languages with namespaces, 

their containing namespace) with unnecessary variables. 

They permit lazy allocation and initialization, whereas global variables in many 
languages will always consume resources.



Singleton Pattern



Singleton Class Diagram



Implement Singleton in .NET (GoF way)

• Advantages:
Because the instance is created inside the Instance property method, the class 

can exercise additional functionality.
The instantiation is not performed until an object asks for an instance; this 

approach is referred to as lazy instantiation. Lazy instantiation avoids 
instantiating unnecessary singletons when the application starts. 

• Disadvantages:
Not safe for multithreaded environments. If separate threads of execution enter 

the Instance property method at the same time, more that one instance of the 
Singleton object may be created.



Thread Safe Singleton in .NET (using Static)

• In this strategy, the instance is created the first time any member of 
the class is referenced. 

• In addition, the variable is marked readonly.



Multithreaded Singleton in .NET

• In some cases we cannot rely on the 
CLR to ensure thread safety. 

• Double-Check Locking idiom. 

• Variable is declared volatile.

• Uses a syncRoot instance to lock 
on. 

• Double-check locking approach solves thread concurrency problems while avoiding an exclusive lock 
in every call to the Instance property method. Also allows you to delay instantiation until the object 
is first accessed. 



Factory Method

• Define an interface for creating an object, but let subclasses 
decide which class to instantiate. 

• Factory Method lets a class defer instantiation to subclasses. 



Factory Method in .NET



Abstract Factory Pattern

• Provides a way to encapsulate a group of individual factories 
that have a common theme. 

• The client software creates a concrete implementation of the 
abstract factory. 

• Client does not know (or care) which concrete objects it gets 
from each of these internal factories



Implement Factory in .NET



Factory in .NET: DbProviderFactory



Factory in .NET: DbProviderFactory



Builder Design Pattern

• Builder focuses on constructing a complex object step by step.

• Builder often builds a Composite. 

• Often, designs start out using Factory Method and evolve toward 
Abstract Factory, Prototype, or Builder. 

• Sometimes creational patterns are complementary.



Builder Design Pattern



Builder Pattern

• Separate construction of a complex object from its representation so 
that the same construction process can create 
different representations. 

• Parse a complex representation, create one of several targets. 

• Difference Between Builder and Factory 

Builder focuses on constructing a complex object step by step. Abstract 
Factory emphasizes a family of product objects - simple or complex. 



Builder Pattern in .NET BCL



Builder: SqlConnectionStringBuilder in .NET



Façade 

• Facade or Façade is generally one side of the exterior of a building, 
especially the front, but also sometimes the sides and rear. 

• The word comes from the French language, literally meaning 
"frontage" or "face".



Façade Pattern

• A facade is an object that 
provides a simplified interface to 
a larger body of code, such as a 
class library. 

• A facade can:

Make a software library easier to use, 
understand and test

Make code that uses the library more 
readable

Reduce dependencies of outside code 
on the inner workings of a library

Wrap a poorly-designed collection of 
APIs with a single well-designed API



Implementing Façade in .NET

Sub System A

Sub System B

Sub System C



Implementing Façade in .NET (Cont’d)



Template Method Pattern

• Define the skeleton of an algorithm in an operation

• Template Method lets subclasses redefine certain steps of an 
algorithm. 

• Base class declares algorithm ‘placeholders’, and derived classes 
implement the placeholders. 



Implement Template Method Pattern in .NET



Implement Template Method Pattern in .NET 
(Cont’d)



Template Method Pattern – Example 2



Template Method Pattern – Example 2



Alternate Template Method Implementation (using Interface)



Decorator Pattern

• Attach additional responsibilities to an object dynamically. 
Decorators provide a flexible alternative to subclassing for 
extending functionality. 

• Client-specified embellishment of a core object by recursively 
wrapping it. 

• Wrapping a gift, putting it in a box, and wrapping the box 

• You want to add behavior or state to individual objects at 
run-time. Inheritance is not feasible because it is static 
and applies to an entire class.



Decorator in WPF



Implementing Decorator in .NET



Implementing Decorator in .NET (Cont’d)



Implementing Decorator in .NET (Cont’d)



• UML Class Diagrams: Reference

• https://msdn.microsoft.com/en-
us/library/dd409437.aspx

• Designing and Viewing Classes and Types

• https://msdn.microsoft.com/en-
us/library/ab7aty24.aspx


